Generalized line criterion for Gauss-Seidel method
نویسندگان
چکیده
منابع مشابه
Interval Gauss-Seidel Method for Generalized Solution Sets to Interval Linear Systems
In the paper, we advance a numerical technique for enclosing generalized AE-solution sets to interval linear systems. The main result of the paper is an extension of the well-known interval Gauss-Seidel method to the problems of outer estimation of these generalized solution sets. We give a theoretical study of the new method, prove an optimality property for the generalized interval Gauss-Seid...
متن کاملPreconditioned Gauss-seidel Iterative Method for Z-matrices Linear Systems
For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (α) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (α) + K̄ (β) as a preconditioner. We present some com...
متن کاملImproved Gauss–Seidel Projection Method for Micromagnetics Simulations
The Gauss–Seidel projection method (GSPM) (Wang et al., J. Comp. Phys., vol. 171, pp. 357–372, 2001) is a simple, efficient, and unconditionally stable method for micromagnetics simulations. We present an improvement of the method for small values of the damping parameter. With the new method, we are able to carry out fully resolved simulations of the magnetization reversal process in the prese...
متن کاملGauss-Seidel method for multi-valued inclusions with Z mappings
We consider a problem of solution of a multi-valued inclusion on a cone segment. In the case where the underlying mapping possesses Z type properties we suggest an extension of Gauss-Seidel algorithms from nonlinear equations. We prove convergence of a modified double iteration process under rather mild additional assumptions. Some results of numerical experiments are also presented.
متن کاملA Review of Preconditioners for the Interval Gauss – Seidel Method
Interval Newton methods in conjunction with generalized bisection can form the basis of algorithms that find all real roots within a specified box X ⊂ Rn of a system of nonlinear equations F (X) = 0 with mathematical certainty, even in finite-precision arithmetic. In such methods, the system F (X) = 0 is transformed into a linear interval system 0 = F (M) + F′(X)(X̃ −M); if interval arithmetic i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Clinics
سال: 2003
ISSN: 1807-0302
DOI: 10.1590/s1807-03022003000100006